CoreCLR源码探索(三) GC内存分配器的内部实现
在前一篇中我讲解了new是怎么工作的, 但是却一笔跳过了内存分配相关的部分. 在这一篇中我将详细讲解GC内存分配器的内部实现. 在看这一篇之前请必须先看完微软BOTR文档中的”Garbage Collection Design”, 原文地址是: https://github.com/dotnet/coreclr/blob/master/Documentation/botr/garbage-collection.md 译文可以看知平软件的译文或我后来的译文 请务必先看完”Garbage Collection Design”, 否则以下内容你很可能会无法理解
服务器GC和工作站GC
关于服务器GC和工作站GC的区别, 网上已经有很多资料讲解这篇就不再说明了. 我们来看服务器GC和工作站GC的代码是怎么区别开来的. 默认编译CoreCLR会对同一份代码以使用服务器GC还是工作站GC的区别编译两次, 分别在SVR和WKS命名空间中:
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gcsvr.cpp
#define SERVER_GC 1
namespace SVR {
#include "gcimpl.h"
#include "gc.cpp"
}
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gcwks.cpp
#ifdef SERVER_GC
#undef SERVER_GC
#endif
namespace WKS {
#include "gcimpl.h"
#include "gc.cpp"
}
当定义了SERVER_GC时, MULTIPLE_HEAPS和会被同时定义. 定义了MULTIPLE_HEAPS会使用多个堆(Heap), 服务器GC每个cpu核心都会对应一个堆(默认), 工作站GC则全局使用同一个堆.
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gcimpl.h
#ifdef SERVER_GC
#define MULTIPLE_HEAPS 1
#endif // SERVER_GC
后台GC无论是服务器GC还是工作站GC都会默认支持, 但运行时不一定会启用.
源代码: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gcpriv.h
#define BACKGROUND_GC //concurrent background GC (requires WRITE_WATCH)
我们从https://www.microsoft.com/net下回来的CoreCLR安装包中已经包含了服务器GC和后台GC的支持,但默认不会开启. 开启它们可以修改project.json中的·runtimeOptions·节, 例子如下:
{
"runtimeOptions": {
"configProperties": {
"System.GC.Server": true,
"System.GC.Concurrent": true
}
}
}
设置后发布项目可以看到coreapp.runtimeconfig.json, 运行时会只看这个文件. 微软官方的文档: https://docs.microsoft.com/en-us/dotnet/articles/core/tools/project-json
GC相关的类和它们的关系
我先用两张图来解释服务器GC和工作站GC下GC相关的类的关系
图中一共有5个类型
- GCHeap
- 实现了IGCHeap接口, 公开GC层的接口给EE(运行引擎)层调用
- 在工作站GC下只有一个实例, 不会关联gc_heap对象, 因为工作站GC下gc_heap的所有成员都会被定义为静态变量
- 在服务器GC下有1+cpu核心数个实例(默认), 第一个实例用于当接口, 其它对应cpu核心的实例都会各关联一个gc_heap实例
- gc_heap
- 内部的使用的堆类型, 用于负责内存的分配和回收
- 在工作站GC下无实例, 所有成员都会定义为静态变量
- 在工作站GC下generation_table这个成员不会被定义, 而是使用全局变量generation_table
- 在服务器GC下有cpu核心数个实例(默认), 各关联一个GCHeap实例
- generation
- 储存各个代的信息, 例如地址范围和使用的段
- 储存在generation_table中, 一个generation_table包含了5个generation, 前面的是0 1 2 3代, 最后一个不会被初始化和使用
- 在工作站GC下只有1个generation_table, 就是全局变量generation_table
- 在服务器GC下generation_table是gc_heap的成员, 有多少个gc_heap就有多少个generation_table
- heap_segment
- 堆段, 供分配器使用的一段内存, 用链表形式保存
- 每个gc_heap中都有一个或一个以上的segment
- 每个gc_heap中都有一个ephemeral heap segment(用于存放最年轻对象)
- 每个gc_heap中都有一个large heap segment(用于存放大对象)
- 在工作站GC下segment的默认大小是256M(0x10000000字节)
- 在服务器GC下segment的默认大小是4G(0x100000000字节)
- alloc_context
- 分配上下文, 指向segment中的一个范围, 用于实际分配对象
- 每个线程都有自己的分配上下文, 因为指向的范围不一样所以只要当前范围还有足够空间, 分配对象时不需要线程锁
- 分配上下文的默认范围是8K, 也叫分配单位(Allocation Quantum)
- 分配小对象时会从这8K中分配, 分配大对象时则会直接从段(segment)中分配
- 代0(gen 0)还有一个默认的分配上下文供内部使用, 和线程无关
GCHeap的源代码摘要:
GCHeap的定义: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gcimpl.h#L61 这里我只列出这篇文章涉及到的成员
// WKS::GCHeap或SVR::GCHeap继承全局命名空间下的GCHeap
class GCHeap : public ::GCHeap
{
#ifdef MULTIPLE_HEAPS
// 服务器GC每个GCHeap实例都会和一个gc_heap实例互相关联
gc_heap* pGenGCHeap;
#else
// 工作站GC下gc_heap所有字段和函数都是静态的, 所以可以用((gc_heap*)nullptr)->xxx来访问
// 严格来说是UB(未定义动作), 但是实际可以工作
#define pGenGCHeap ((gc_heap*)0)
#endif //MULTIPLE_HEAPS
};
全局的GCHeap实例: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gc.h#L105 这里是1.1.0的代码, 1.2.0全局GCHeap会分别保存到gcheaputilities.h(g_pGCHeap)和gc.cpp(g_theGCHeap), 两处地方都指向同一个实例.
// 相当于extern GCHeap* g_pGCHeap;
GPTR_DECL(GCHeap, g_pGCHeap);
gc_heap的源代码摘要:
gc_heap的定义: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gcpriv.h#L1079 这个类有300多个成员(从ephemeral_low开始), 这里我只列出这篇文章涉及到的成员
class gc_heap
{
#ifdef MULTIPLE_HEAPS
// 对应的GCHeap实例
PER_HEAP GCHeap* vm_heap;
// 序号
PER_HEAP int heap_number;
// 给分配上下文设置内存范围的次数
PER_HEAP VOLATILE(int) alloc_context_count;
#else //MULTIPLE_HEAPS
// 工作站GC时对应全局的GCHeap实例
#define vm_heap ((GCHeap*) g_pGCHeap)
// 工作站GC时序号为0
#define heap_number (0)
#endif //MULTIPLE_HEAPS
#ifndef MULTIPLE_HEAPS
// 当前使用的短暂的堆段(用于分配新对象的堆段)
SPTR_DECL(heap_segment,ephemeral_heap_segment);
#else
// 同上
PER_HEAP heap_segment* ephemeral_heap_segment;
#endif // !MULTIPLE_HEAPS
// 全局GC线程锁, 静态变量
PER_HEAP_ISOLATED GCSpinLock gc_lock; //lock while doing GC
// 分配上下文用完, 需要为分配上下文指定新的范围时使用的线程锁
PER_HEAP GCSpinLock more_space_lock; //lock while allocating more space
#ifdef MULTIPLE_HEAPS
// 储存各个代的信息
// NUMBERGENERATIONS+1=5, 代分别有0 1 2 3, 最后一个元素不会被使用
// 工作站GC时不会定义, 而是使用全局变量generation_table
PER_HEAP generation generation_table [NUMBERGENERATIONS+1];
#endif
#ifdef MULTIPLE_HEAPS
// 全局gc_heap的数量, 静态变量
// 服务器GC默认是cpu核心数, 工作站GC是0
SVAL_DECL(int, n_heaps);
// 全局gc_heap的数组, 静态变量
SPTR_DECL(PTR_gc_heap, g_heaps);
#endif
};
generation的源代码摘要:
generation的定义: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gcpriv.h#L754 这里我只列出这篇文章涉及到的成员
class generation
{
public:
// 默认的分配上下文
alloc_context allocation_context;
// 用于分配的最新的堆段
heap_segment* allocation_segment;
// 开始的堆段
PTR_heap_segment start_segment;
// 用于区分对象在哪个代的指针, 在此之后的对象都属于这个代, 或比这个代更年轻的代
uint8_t* allocation_start;
// 用于储存和分配自由对象(Free Object, 又名Unused Array, 可以理解为碎片空间)的分配器
allocator free_list_allocator;
// 这个代是第几代
int gen_num;
};
heap_segment的源代码摘要:
heap_segment的定义: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gcpriv.h#L4166 这里我只列出这篇文章涉及到的成员
class heap_segment
{
public:
// 已实际分配地址 (mem + 已分配大小)
// 更新有可能会延迟
uint8_t* allocated;
// 已提交到物理内存的地址 (this + SEGMENT_INITIAL_COMMIT)
uint8_t* committed;
// 预留到的分配地址 (this + size)
uint8_t* reserved;
// 已使用地址 (mem + 已分配大小 - 对象头大小)
uint8_t* used;
// 初始分配地址 (服务器gc开启时: this + OS_PAGE_SIZE, 否则: this + sizeof(*this) + alignment)
uint8_t* mem;
// 下一个堆段
PTR_heap_segment next;
// 属于的gc_heap实例
gc_heap* heap;
};
alloc_context的源代码摘要:
alloc_context的定义: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gc.h#L162 这里是1.1.0的代码, 1.2.0这些成员移动到了gcinterface.h的gc_alloc_context, 但是成员还是一样的
struct alloc_context
{
// 下一次分配对象的开始地址
uint8_t* alloc_ptr;
// 可以分配到的最终地址
uint8_t* alloc_limit;
// 历史分配的小对象大小合计
int64_t alloc_bytes; //Number of bytes allocated on SOH by this context
// 历史分配的大对象大小合计
int64_t alloc_bytes_loh; //Number of bytes allocated on LOH by this context
#if defined(FEATURE_SVR_GC)
// 空间不够需要获取更多空间时使用的GCHeap
// 分alloc_heap和home_heap的作用是平衡各个heap的使用量,这样并行回收时可以减少处理各个heap的时间差异
SVR::GCHeap* alloc_heap;
// 原来的GCHeap
SVR::GCHeap* home_heap;
#endif // defined(FEATURE_SVR_GC)
// 历史分配对象次数
int alloc_count;
};
堆段的物理结构
为了更好理解下面即将讲解的代码,请先看这两张图片
分配对象内存的代码流程
还记得上篇我提到过的AllocateObject函数吗? 这个函数由JIT_New调用, 负责分配一个普通的对象. 让我们来继续跟踪这个函数的内部吧:
AllocateObject函数的内容: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/gchelpers.cpp#L931 AllocateObject的其他版本同样也会调用AllocAlign8或Alloc函数, 下面就不再贴出其他版本的函数代码了.
OBJECTREF AllocateObject(MethodTable *pMT
#ifdef FEATURE_COMINTEROP
, bool fHandleCom
#endif
)
{
// 省略部分代码......
Object *orObject = NULL;
// 调用gc的帮助函数分配内存,如果需要向8对齐则调用AllocAlign8,否则调用Alloc
if (pMT->RequiresAlign8())
{
// 省略部分代码......
orObject = (Object *) AllocAlign8(baseSize,
pMT->HasFinalizer(),
pMT->ContainsPointers(),
pMT->IsValueType());
}
else
{
orObject = (Object *) Alloc(baseSize,
pMT->HasFinalizer(),
pMT->ContainsPointers());
}
// 省略部分代码......
return UNCHECKED_OBJECTREF_TO_OBJECTREF(oref);
}
Alloc函数的内容: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/gchelpers.cpp#L931
inline Object* Alloc(size_t size, BOOL bFinalize, BOOL bContainsPointers )
{
// 省略部分代码......
// 如果启用分配上下文,则使用当前线程的分配上下文进行分配
// 否则使用代(generation)中默认的分配上下文进行分配
// 按官方的说法绝大部分情况下都会启用分配上下文
// 实测的机器上UseAllocationContexts函数会不经过判断直接返回true
if (GCHeap::UseAllocationContexts())
retVal = GCHeap::GetGCHeap()->Alloc(GetThreadAllocContext(), size, flags);
else
retVal = GCHeap::GetGCHeap()->Alloc(size, flags);
// 省略部分代码......
return retVal;
}
GetGCHeap函数的内容: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gc.h#L377
static GCHeap *GetGCHeap()
{
LIMITED_METHOD_CONTRACT;
// 返回全局的GCHeap实例
// 注意这个实例只作为接口使用,不和具体的gc_heap实例关联
_ASSERTE(g_pGCHeap != NULL);
return g_pGCHeap;
}
GetThreadAllocContext函数的内容: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/gchelpers.cpp#L54
inline alloc_context* GetThreadAllocContext()
{
WRAPPER_NO_CONTRACT;
assert(GCHeap::UseAllocationContexts());
// 获取当前线程并返回m_alloc_context成员的地址
return & GetThread()->m_alloc_context;
}
GCHeap::Alloc函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp
Object*
GCHeap::Alloc(alloc_context* acontext, size_t size, uint32_t flags REQD_ALIGN_DCL)
{
// 省略部分代码......
Object* newAlloc = NULL;
// 如果分配上下文是第一次使用,使用AssignHeap函数先给它对应一个GCHeap实例
#ifdef MULTIPLE_HEAPS
if (acontext->alloc_heap == 0)
{
AssignHeap (acontext);
assert (acontext->alloc_heap);
}
#endif //MULTIPLE_HEAPS
// 必要时触发GC
#ifndef FEATURE_REDHAWK
GCStress<gc_on_alloc>::MaybeTrigger(acontext);
#endif // FEATURE_REDHAWK
// 服务器GC使用GCHeap对应的gc_heap, 工作站GC使用nullptr
#ifdef MULTIPLE_HEAPS
gc_heap* hp = acontext->alloc_heap->pGenGCHeap;
#else
gc_heap* hp = pGenGCHeap;
// 省略部分代码......
#endif //MULTIPLE_HEAPS
// 分配小对象时使用allocate函数, 分配大对象时使用allocate_large_object函数
if (size < LARGE_OBJECT_SIZE)
{
#ifdef TRACE_GC
AllocSmallCount++;
#endif //TRACE_GC
// 分配小对象内存
newAlloc = (Object*) hp->allocate (size + ComputeMaxStructAlignPad(requiredAlignment), acontext);
#ifdef FEATURE_STRUCTALIGN
// 对齐指针
newAlloc = (Object*) hp->pad_for_alignment ((uint8_t*) newAlloc, requiredAlignment, size, acontext);
#endif // FEATURE_STRUCTALIGN
// ASSERT (newAlloc);
}
else
{
// 分配大对象内存
newAlloc = (Object*) hp->allocate_large_object (size + ComputeMaxStructAlignPadLarge(requiredAlignment), acontext->alloc_bytes_loh);
#ifdef FEATURE_STRUCTALIGN
// 对齐指针
newAlloc = (Object*) hp->pad_for_alignment_large ((uint8_t*) newAlloc, requiredAlignment, size);
#endif // FEATURE_STRUCTALIGN
}
// 省略部分代码......
return newAlloc;
}
分配小对象内存的代码流程
让我们来看一下小对象的内存是如何分配的
allocate函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp
这个函数尝试从分配上下文分配内存, 失败时调用allocate_more_space为分配上下文指定新的空间
这里的前半部分的处理还有汇编版本, 可以看上一篇分析的JIT_TrialAllocSFastMP_InlineGetThread
函数
inline
CObjectHeader* gc_heap::allocate (size_t jsize, alloc_context* acontext)
{
size_t size = Align (jsize);
assert (size >= Align (min_obj_size));
{
retry:
// 尝试把对象分配到alloc_ptr
uint8_t* result = acontext->alloc_ptr;
acontext->alloc_ptr+=size;
// 如果alloc_ptr + 对象大小 > alloc_limit, 则表示这个分配上下文是第一次使用或者剩余空间已经不够用了
if (acontext->alloc_ptr <= acontext->alloc_limit)
{
// 分配成功, 这里返回的地址就是+=size之前的alloc_ptr
CObjectHeader* obj = (CObjectHeader*)result;
assert (obj != 0);
return obj;
}
else
{
// 分配失败, 把size减回去
acontext->alloc_ptr -= size;
#ifdef _MSC_VER
#pragma inline_depth(0)
#endif //_MSC_VER
// 尝试为分配上下文重新指定一块范围
if (! allocate_more_space (acontext, size, 0))
return 0;
#ifdef _MSC_VER
#pragma inline_depth(20)
#endif //_MSC_VER
// 重试
goto retry;
}
}
}
allocate_more_space函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp 这个函数会在有多个heap时调用balance_heaps平衡各个heap的使用量, 然后再调用try_allocate_more_space函数
BOOL gc_heap::allocate_more_space(alloc_context* acontext, size_t size,
int alloc_generation_number)
{
int status;
do
{
// 如果有多个heap需要先平衡它们的使用量以减少并行回收时的处理时间差
#ifdef MULTIPLE_HEAPS
if (alloc_generation_number == 0)
{
// 平衡各个heap的使用量
balance_heaps (acontext);
// 调用try_allocate_more_space函数
status = acontext->alloc_heap->pGenGCHeap->try_allocate_more_space (acontext, size, alloc_generation_number);
}
else
{
// 平衡各个heap的使用量(大对象)
gc_heap* alloc_heap = balance_heaps_loh (acontext, size);
// 调用try_allocate_more_space函数
status = alloc_heap->try_allocate_more_space (acontext, size, alloc_generation_number);
}
#else
// 只有一个heap时直接调用try_allocate_more_space函数
status = try_allocate_more_space (acontext, size, alloc_generation_number);
#endif //MULTIPLE_HEAPS
}
while (status == -1);
return (status != 0);
}
try_allocate_more_space函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp 这个函数会获取MSL锁, 检查是否有必要触发GC, 然后根据gen_number参数调用allocate_small或allocate_large函数
int gc_heap::try_allocate_more_space (alloc_context* acontext, size_t size,
int gen_number)
{
// gc已经开始时等待gc完成并重试
// allocate函数会跑到retry再调用这个函数
if (gc_heap::gc_started)
{
wait_for_gc_done();
return -1;
}
// 获取more_space_lock锁
// 并且统计获取锁需要的时间是否多或者少
#ifdef SYNCHRONIZATION_STATS
unsigned int msl_acquire_start = GetCycleCount32();
#endif //SYNCHRONIZATION_STATS
enter_spin_lock (&more_space_lock);
add_saved_spinlock_info (me_acquire, mt_try_alloc);
dprintf (SPINLOCK_LOG, ("[%d]Emsl for alloc", heap_number));
#ifdef SYNCHRONIZATION_STATS
unsigned int msl_acquire = GetCycleCount32() - msl_acquire_start;
total_msl_acquire += msl_acquire;
num_msl_acquired++;
if (msl_acquire > 200)
{
num_high_msl_acquire++;
}
else
{
num_low_msl_acquire++;
}
#endif //SYNCHRONIZATION_STATS
// 这部分的代码被注释了
// 因为获取msl(more space lock)锁已经可以防止问题出现
/*
// We are commenting this out 'cause we don't see the point - we already
// have checked gc_started when we were acquiring the msl - no need to check
// again. This complicates the logic in bgc_suspend_EE 'cause that one would
// need to release msl which causes all sorts of trouble.
if (gc_heap::gc_started)
{
#ifdef SYNCHRONIZATION_STATS
good_suspension++;
#endif //SYNCHRONIZATION_STATS
BOOL fStress = (g_pConfig->GetGCStressLevel() & EEConfig::GCSTRESS_TRANSITION) != 0;
if (!fStress)
{
//Rendez vous early (MP scaling issue)
//dprintf (1, ("[%d]waiting for gc", heap_number));
wait_for_gc_done();
#ifdef MULTIPLE_HEAPS
return -1;
#endif //MULTIPLE_HEAPS
}
}
*/
dprintf (3, ("requested to allocate %d bytes on gen%d", size, gen_number));
// 获取对齐使用的值
// 小对象3(0b11)或者7(0b111), 大对象7(0b111)
int align_const = get_alignment_constant (gen_number != (max_generation+1));
// 必要时触发GC
if (fgn_maxgen_percent)
{
check_for_full_gc (gen_number, size);
}
// 再次检查必要时触发GC
if (!(new_allocation_allowed (gen_number)))
{
if (fgn_maxgen_percent && (gen_number == 0))
{
// We only check gen0 every so often, so take this opportunity to check again.
check_for_full_gc (gen_number, size);
}
// 后台GC运行中并且物理内存占用率在95%以上时等待后台GC完成
#ifdef BACKGROUND_GC
wait_for_bgc_high_memory (awr_gen0_alloc);
#endif //BACKGROUND_GC
#ifdef SYNCHRONIZATION_STATS
bad_suspension++;
#endif //SYNCHRONIZATION_STATS
dprintf (/*100*/ 2, ("running out of budget on gen%d, gc", gen_number));
// 必要时原地触发GC
if (!settings.concurrent || (gen_number == 0))
{
vm_heap->GarbageCollectGeneration (0, ((gen_number == 0) ? reason_alloc_soh : reason_alloc_loh));
#ifdef MULTIPLE_HEAPS
// 触发GC后会释放MSL锁, 需要重新获取
enter_spin_lock (&more_space_lock);
add_saved_spinlock_info (me_acquire, mt_try_budget);
dprintf (SPINLOCK_LOG, ("[%d]Emsl out budget", heap_number));
#endif //MULTIPLE_HEAPS
}
}
// 根据是第几代调用不同的函数, 函数里面会给分配上下文指定新的范围
// 参数gen_number只能是0或者3
BOOL can_allocate = ((gen_number == 0) ?
allocate_small (gen_number, size, acontext, align_const) :
allocate_large (gen_number, size, acontext, align_const));
// 成功时检查是否要触发ETW(Event Tracing for Windows)事件
if (can_allocate)
{
// 记录给了分配上下文多少字节
//ETW trace for allocation tick
size_t alloc_context_bytes = acontext->alloc_limit + Align (min_obj_size, align_const) - acontext->alloc_ptr;
int etw_allocation_index = ((gen_number == 0) ? 0 : 1);
etw_allocation_running_amount[etw_allocation_index] += alloc_context_bytes;
// 超过一定量时触发ETW事件
if (etw_allocation_running_amount[etw_allocation_index] > etw_allocation_tick)
{
#ifdef FEATURE_REDHAWK
FireEtwGCAllocationTick_V1((uint32_t)etw_allocation_running_amount[etw_allocation_index],
((gen_number == 0) ? ETW::GCLog::ETW_GC_INFO::AllocationSmall : ETW::GCLog::ETW_GC_INFO::AllocationLarge),
GetClrInstanceId());
#else
// Unfortunately some of the ETW macros do not check whether the ETW feature is enabled.
// The ones that do are much less efficient.
#if defined(FEATURE_EVENT_TRACE)
if (EventEnabledGCAllocationTick_V2())
{
fire_etw_allocation_event (etw_allocation_running_amount[etw_allocation_index], gen_number, acontext->alloc_ptr);
}
#endif //FEATURE_EVENT_TRACE
#endif //FEATURE_REDHAWK
// 重置量
etw_allocation_running_amount[etw_allocation_index] = 0;
}
}
return (int)can_allocate;
}
allocate_small函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp 循环尝试进行各种回收内存的处理和调用soh_try_fit函数, soh_try_fit函数分配成功或手段已经用尽时跳出循环
BOOL gc_heap::allocate_small (int gen_number,
size_t size,
alloc_context* acontext,
int align_const)
{
// 工作站GC且后台GC运行时140次(bgc_alloc_spin_count)休眠1次, 休眠时间2ms(bgc_alloc_spin)
#if defined (BACKGROUND_GC) && !defined (MULTIPLE_HEAPS)
if (recursive_gc_sync::background_running_p())
{
background_soh_alloc_count++;
if ((background_soh_alloc_count % bgc_alloc_spin_count) == 0)
{
Thread* current_thread = GetThread();
add_saved_spinlock_info (me_release, mt_alloc_small);
dprintf (SPINLOCK_LOG, ("[%d]spin Lmsl", heap_number));
leave_spin_lock (&more_space_lock);
BOOL cooperative_mode = enable_preemptive (current_thread);
GCToOSInterface::Sleep (bgc_alloc_spin);
disable_preemptive (current_thread, cooperative_mode);
enter_spin_lock (&more_space_lock);
add_saved_spinlock_info (me_acquire, mt_alloc_small);
dprintf (SPINLOCK_LOG, ("[%d]spin Emsl", heap_number));
}
else
{
//GCToOSInterface::YieldThread (0);
}
}
#endif //BACKGROUND_GC && !MULTIPLE_HEAPS
gc_reason gr = reason_oos_soh;
oom_reason oom_r = oom_no_failure;
// No variable values should be "carried over" from one state to the other.
// That's why there are local variable for each state
allocation_state soh_alloc_state = a_state_start;
// 开始循环切换状态, 请关注soh_alloc_state
// If we can get a new seg it means allocation will succeed.
while (1)
{
dprintf (3, ("[h%d]soh state is %s", heap_number, allocation_state_str[soh_alloc_state]));
switch (soh_alloc_state)
{
// 成功或失败时跳出循环
case a_state_can_allocate:
case a_state_cant_allocate:
{
goto exit;
}
// 开始时切换状态到a_state_try_fit
case a_state_start:
{
soh_alloc_state = a_state_try_fit;
break;
}
// 调用soh_try_fit函数
// 成功时切换状态到a_state_can_allocate
// 失败时切换状态到a_state_trigger_full_compact_gc或a_state_trigger_ephemeral_gc
case a_state_try_fit:
{
BOOL commit_failed_p = FALSE;
BOOL can_use_existing_p = FALSE;
can_use_existing_p = soh_try_fit (gen_number, size, acontext,
align_const, &commit_failed_p,
NULL);
soh_alloc_state = (can_use_existing_p ?
a_state_can_allocate :
(commit_failed_p ?
a_state_trigger_full_compact_gc :
a_state_trigger_ephemeral_gc));
break;
}
// 后台GC完成后调用soh_try_fit函数
// 成功时切换状态到a_state_can_allocate
// 失败时切换状态到a_state_trigger_2nd_ephemeral_gc或a_state_trigger_full_compact_gc
case a_state_try_fit_after_bgc:
{
BOOL commit_failed_p = FALSE;
BOOL can_use_existing_p = FALSE;
BOOL short_seg_end_p = FALSE;
can_use_existing_p = soh_try_fit (gen_number, size, acontext,
align_const, &commit_failed_p,
&short_seg_end_p);
soh_alloc_state = (can_use_existing_p ?
a_state_can_allocate :
(short_seg_end_p ?
a_state_trigger_2nd_ephemeral_gc :
a_state_trigger_full_compact_gc));
break;
}
// 压缩GC完成后调用soh_try_fit函数
// 如果压缩后仍分配失败则切换状态到a_state_cant_allocate
// 成功时切换状态到a_state_can_allocate
case a_state_try_fit_after_cg:
{
BOOL commit_failed_p = FALSE;
BOOL can_use_existing_p = FALSE;
BOOL short_seg_end_p = FALSE;
can_use_existing_p = soh_try_fit (gen_number, size, acontext,
align_const, &commit_failed_p,
&short_seg_end_p);
if (short_seg_end_p)
{
soh_alloc_state = a_state_cant_allocate;
oom_r = oom_budget;
}
else
{
if (can_use_existing_p)
{
soh_alloc_state = a_state_can_allocate;
}
else
{
#ifdef MULTIPLE_HEAPS
if (!commit_failed_p)
{
// some other threads already grabbed the more space lock and allocated
// so we should attemp an ephemeral GC again.
assert (heap_segment_allocated (ephemeral_heap_segment) < alloc_allocated);
soh_alloc_state = a_state_trigger_ephemeral_gc;
}
else
#endif //MULTIPLE_HEAPS
{
assert (commit_failed_p);
soh_alloc_state = a_state_cant_allocate;
oom_r = oom_cant_commit;
}
}
}
break;
}
// 等待后台GC完成
// 如果执行了压缩则切换状态到a_state_try_fit_after_cg
// 否则切换状态到a_state_try_fit_after_bgc
case a_state_check_and_wait_for_bgc:
{
BOOL bgc_in_progress_p = FALSE;
BOOL did_full_compacting_gc = FALSE;
bgc_in_progress_p = check_and_wait_for_bgc (awr_gen0_oos_bgc, &did_full_compacting_gc);
soh_alloc_state = (did_full_compacting_gc ?
a_state_try_fit_after_cg :
a_state_try_fit_after_bgc);
break;
}
// 触发第0和1代的GC
// 如果有压缩则切换状态到a_state_try_fit_after_cg
// 否则重试soh_try_fit, 成功时切换状态到a_state_can_allocate, 失败时切换状态到等待后台GC或触发其他GC
case a_state_trigger_ephemeral_gc:
{
BOOL commit_failed_p = FALSE;
BOOL can_use_existing_p = FALSE;
BOOL short_seg_end_p = FALSE;
BOOL bgc_in_progress_p = FALSE;
BOOL did_full_compacting_gc = FALSE;
did_full_compacting_gc = trigger_ephemeral_gc (gr);
if (did_full_compacting_gc)
{
soh_alloc_state = a_state_try_fit_after_cg;
}
else
{
can_use_existing_p = soh_try_fit (gen_number, size, acontext,
align_const, &commit_failed_p,
&short_seg_end_p);
#ifdef BACKGROUND_GC
bgc_in_progress_p = recursive_gc_sync::background_running_p();
#endif //BACKGROUND_GC
if (short_seg_end_p)
{
soh_alloc_state = (bgc_in_progress_p ?
a_state_check_and_wait_for_bgc :
a_state_trigger_full_compact_gc);
if (fgn_maxgen_percent)
{
dprintf (2, ("FGN: doing last GC before we throw OOM"));
send_full_gc_notification (max_generation, FALSE);
}
}
else
{
if (can_use_existing_p)
{
soh_alloc_state = a_state_can_allocate;
}
else
{
#ifdef MULTIPLE_HEAPS
if (!commit_failed_p)
{
// some other threads already grabbed the more space lock and allocated
// so we should attemp an ephemeral GC again.
assert (heap_segment_allocated (ephemeral_heap_segment) < alloc_allocated);
soh_alloc_state = a_state_trigger_ephemeral_gc;
}
else
#endif //MULTIPLE_HEAPS
{
soh_alloc_state = a_state_trigger_full_compact_gc;
if (fgn_maxgen_percent)
{
dprintf (2, ("FGN: failed to commit, doing full compacting GC"));
send_full_gc_notification (max_generation, FALSE);
}
}
}
}
}
break;
}
// 第二次触发第0和1代的GC
// 如果有压缩则切换状态到a_state_try_fit_after_cg
// 否则重试soh_try_fit, 成功时切换状态到a_state_can_allocate, 失败时切换状态到a_state_trigger_full_compact_gc
case a_state_trigger_2nd_ephemeral_gc:
{
BOOL commit_failed_p = FALSE;
BOOL can_use_existing_p = FALSE;
BOOL short_seg_end_p = FALSE;
BOOL did_full_compacting_gc = FALSE;
did_full_compacting_gc = trigger_ephemeral_gc (gr);
if (did_full_compacting_gc)
{
soh_alloc_state = a_state_try_fit_after_cg;
}
else
{
can_use_existing_p = soh_try_fit (gen_number, size, acontext,
align_const, &commit_failed_p,
&short_seg_end_p);
if (short_seg_end_p || commit_failed_p)
{
soh_alloc_state = a_state_trigger_full_compact_gc;
}
else
{
assert (can_use_existing_p);
soh_alloc_state = a_state_can_allocate;
}
}
break;
}
// 触发第0和1和2代的压缩GC
// 成功时切换状态到a_state_try_fit_after_cg, 失败时切换状态到a_state_cant_allocate
case a_state_trigger_full_compact_gc:
{
BOOL got_full_compacting_gc = FALSE;
got_full_compacting_gc = trigger_full_compact_gc (gr, &oom_r);
soh_alloc_state = (got_full_compacting_gc ? a_state_try_fit_after_cg : a_state_cant_allocate);
break;
}
default:
{
assert (!"Invalid state!");
break;
}
}
}
exit:
// 分配失败时处理OOM(Out Of Memory)
if (soh_alloc_state == a_state_cant_allocate)
{
assert (oom_r != oom_no_failure);
handle_oom (heap_number,
oom_r,
size,
heap_segment_allocated (ephemeral_heap_segment),
heap_segment_reserved (ephemeral_heap_segment));
dprintf (SPINLOCK_LOG, ("[%d]Lmsl for oom", heap_number));
add_saved_spinlock_info (me_release, mt_alloc_small_cant);
leave_spin_lock (&more_space_lock);
}
return (soh_alloc_state == a_state_can_allocate);
}
soh_try_fit函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp 这个函数会先尝试调用a_fit_free_list_p从自由对象列表中分配, 然后尝试调用a_fit_segment_end_p从堆段结尾分配
BOOL gc_heap::soh_try_fit (int gen_number,
size_t size,
alloc_context* acontext,
int align_const,
BOOL* commit_failed_p, // 返回参数, 把虚拟内存提交到物理内存是否失败(物理内存不足)
BOOL* short_seg_end_p) // 返回参数, 堆段的结尾是否不够用
{
BOOL can_allocate = TRUE;
// 有传入short_seg_end_p时先设置它的值为false
if (short_seg_end_p)
{
*short_seg_end_p = FALSE;
}
// 先尝试从自由对象列表中分配
can_allocate = a_fit_free_list_p (gen_number, size, acontext, align_const);
if (!can_allocate)
{
// 不能从自由对象列表中分配, 尝试从堆段的结尾分配
// 检查ephemeral_heap_segment的结尾空间是否足够
if (short_seg_end_p)
{
*short_seg_end_p = short_on_end_of_seg (gen_number, ephemeral_heap_segment, align_const);
}
// 如果空间足够, 或者调用时不传入short_seg_end_p参数(传入nullptr), 则调用a_fit_segment_end_p函数
// If the caller doesn't care, we always try to fit at the end of seg;
// otherwise we would only try if we are actually not short at end of seg.
if (!short_seg_end_p || !(*short_seg_end_p))
{
can_allocate = a_fit_segment_end_p (gen_number, ephemeral_heap_segment, size,
acontext, align_const, commit_failed_p);
}
}
return can_allocate;
}
a_fit_free_list_p函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp 这个函数会尝试从自由对象列表中找到足够大小的空间, 如果找到则把分配上下文指向这个空间
inline
BOOL gc_heap::a_fit_free_list_p (int gen_number,
size_t size,
alloc_context* acontext,
int align_const)
{
BOOL can_fit = FALSE;
// 获取指定的代中的自由对象列表
generation* gen = generation_of (gen_number);
allocator* gen_allocator = generation_allocator (gen);
// 列表会按大小分为多个bucket(用链表形式链接)
// 大小会*2递增, 例如first_bucket的大小是256那第二个bucket的大小则为512
size_t sz_list = gen_allocator->first_bucket_size();
for (unsigned int a_l_idx = 0; a_l_idx < gen_allocator->number_of_buckets(); a_l_idx++)
{
if ((size < sz_list) || (a_l_idx == (gen_allocator->number_of_buckets()-1)))
{
uint8_t* free_list = gen_allocator->alloc_list_head_of (a_l_idx);
uint8_t* prev_free_item = 0;
while (free_list != 0)
{
dprintf (3, ("considering free list %Ix", (size_t)free_list));
size_t free_list_size = unused_array_size (free_list);
if ((size + Align (min_obj_size, align_const)) <= free_list_size)
{
dprintf (3, ("Found adequate unused area: [%Ix, size: %Id",
(size_t)free_list, free_list_size));
// 大小足够时从该bucket的链表中pop出来
gen_allocator->unlink_item (a_l_idx, free_list, prev_free_item, FALSE);
// We ask for more Align (min_obj_size)
// to make sure that we can insert a free object
// in adjust_limit will set the limit lower
size_t limit = limit_from_size (size, free_list_size, gen_number, align_const);
uint8_t* remain = (free_list + limit);
size_t remain_size = (free_list_size - limit);
// 如果分配完还有剩余空间, 在剩余空间生成一个自由对象并塞回自由对象列表
if (remain_size >= Align(min_free_list, align_const))
{
make_unused_array (remain, remain_size);
gen_allocator->thread_item_front (remain, remain_size);
assert (remain_size >= Align (min_obj_size, align_const));
}
else
{
//absorb the entire free list
limit += remain_size;
}
generation_free_list_space (gen) -= limit;
// 给分配上下文设置新的范围
adjust_limit_clr (free_list, limit, acontext, 0, align_const, gen_number);
// 分配成功跳出循环
can_fit = TRUE;
goto end;
}
else if (gen_allocator->discard_if_no_fit_p())
{
assert (prev_free_item == 0);
dprintf (3, ("couldn't use this free area, discarding"));
generation_free_obj_space (gen) += free_list_size;
gen_allocator->unlink_item (a_l_idx, free_list, prev_free_item, FALSE);
generation_free_list_space (gen) -= free_list_size;
}
else
{
prev_free_item = free_list;
}
// 同一bucket的下一个自由对象
free_list = free_list_slot (free_list);
}
}
// 当前bucket的大小不够, 下一个bucket的大小会是当前bucket的两倍
sz_list = sz_list * 2;
}
end:
return can_fit;
}
a_fit_segment_end_p函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp 这个函数会尝试在堆段的结尾找到一块足够大小的空间, 如果找到则把分配上下文指向这个空间
BOOL gc_heap::a_fit_segment_end_p (int gen_number,
heap_segment* seg,
size_t size,
alloc_context* acontext,
int align_const,
BOOL* commit_failed_p)
{
*commit_failed_p = FALSE;
size_t limit = 0;
#ifdef BACKGROUND_GC
int cookie = -1;
#endif //BACKGROUND_GC
// 开始分配的地址
uint8_t*& allocated = ((gen_number == 0) ?
alloc_allocated :
heap_segment_allocated(seg));
size_t pad = Align (min_obj_size, align_const);
#ifdef FEATURE_LOH_COMPACTION
if (gen_number == (max_generation + 1))
{
pad += Align (loh_padding_obj_size, align_const);
}
#endif //FEATURE_LOH_COMPACTION
// 最多能分配到的地址 = 已提交到物理内存的地址 - 对齐大小
uint8_t* end = heap_segment_committed (seg) - pad;
// 如果空间足够则跳到found_fit
if (a_size_fit_p (size, allocated, end, align_const))
{
limit = limit_from_size (size,
(end - allocated),
gen_number, align_const);
goto found_fit;
}
// 已提交到物理内存的地址不够用, 需要提交新的地址
// 最多能分配到的地址 = 堆段预留的末尾地址 - 对齐大小
end = heap_segment_reserved (seg) - pad;
// 如果空间足够则调用grow_heap_segment
// 调用grow_heap_segment成功则跳到found_fit, 否则设置commit_failed_p的值等于true
if (a_size_fit_p (size, allocated, end, align_const))
{
limit = limit_from_size (size,
(end - allocated),
gen_number, align_const);
if (grow_heap_segment (seg, allocated + limit))
{
goto found_fit;
}
else
{
dprintf (2, ("can't grow segment, doing a full gc"));
*commit_failed_p = TRUE;
}
}
goto found_no_fit;
found_fit:
// 如果启用了后台GC, 并且正在分配大对象, 需要检测后台GC是否正在标记对象
#ifdef BACKGROUND_GC
if (gen_number != 0)
{
cookie = bgc_alloc_lock->loh_alloc_set (allocated);
}
#endif //BACKGROUND_GC
uint8_t* old_alloc;
old_alloc = allocated;
// 如果是第3代(大对象)则往对齐的空间添加一个自由对象
#ifdef FEATURE_LOH_COMPACTION
if (gen_number == (max_generation + 1))
{
size_t loh_pad = Align (loh_padding_obj_size, align_const);
make_unused_array (old_alloc, loh_pad);
old_alloc += loh_pad;
allocated += loh_pad;
limit -= loh_pad;
}
#endif //FEATURE_LOH_COMPACTION
// 清空SyncBlock
// 正常不需要, 因为前一个对象已经清零并预留好空间
#if defined (VERIFY_HEAP) && defined (_DEBUG)
((void**) allocated)[-1] = 0; //clear the sync block
#endif //VERIFY_HEAP && _DEBUG
// 增加开始分配的地址, 下一次将会从这里分配
// 注意这个不是本地变量而是引用
allocated += limit;
dprintf (3, ("found fit at end of seg: %Ix", old_alloc));
#ifdef BACKGROUND_GC
if (cookie != -1)
{
// 如果后台GC正在标记对象需要调用bgc_loh_alloc_clr给分配上下文设置新的范围
// 这个函数会在下一节(分配大对象内存的代码流程)解释
bgc_loh_alloc_clr (old_alloc, limit, acontext, align_const, cookie, TRUE, seg);
}
else
#endif //BACKGROUND_GC
{
// 给分配上下文设置新的范围
adjust_limit_clr (old_alloc, limit, acontext, seg, align_const, gen_number);
}
return TRUE;
found_no_fit:
return FALSE;
}
adjust_limit_clr函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp 这个函数会给分配上下文设置新的范围 不管是从自由列表还是堆段的结尾分配都会调用这个函数, 从自由列表分配时seg参数会是nullptr 调用完这个函数以后分配上下文就有足够的空间了, 回到gc_heap::allocate的retry就可以成功的分配到对象的内存
void gc_heap::adjust_limit_clr (uint8_t* start, size_t limit_size,
alloc_context* acontext, heap_segment* seg,
int align_const, int gen_number)
{
size_t aligned_min_obj_size = Align(min_obj_size, align_const);
//probably should pass seg==0 for free lists.
if (seg)
{
assert (heap_segment_used (seg) <= heap_segment_committed (seg));
}
dprintf (3, ("Expanding segment allocation [%Ix, %Ix[", (size_t)start,
(size_t)start + limit_size - aligned_min_obj_size));
// 如果分配上下文的开始地址改变了, 并且原来的空间未用完(只是不够用), 应该在这个空间创建一个自由对象
// 这里就是BOTR中说的如果剩下30bytes但是要分配40bytes时会在原来的30bytes创建一个自由对象
// 但如果只是结束地址改变了, 开始地址未改变则不需要
if ((acontext->alloc_limit != start) &&
(acontext->alloc_limit + aligned_min_obj_size)!= start)
{
uint8_t* hole = acontext->alloc_ptr;
if (hole != 0)
{
size_t size = (acontext->alloc_limit - acontext->alloc_ptr);
dprintf (3, ("filling up hole [%Ix, %Ix[", (size_t)hole, (size_t)hole + size + Align (min_obj_size, align_const)));
// when we are finishing an allocation from a free list
// we know that the free area was Align(min_obj_size) larger
acontext->alloc_bytes -= size;
size_t free_obj_size = size + aligned_min_obj_size;
make_unused_array (hole, free_obj_size);
generation_free_obj_space (generation_of (gen_number)) += free_obj_size;
}
// 设置新的开始地址
acontext->alloc_ptr = start;
}
// 设置新的结束地址
acontext->alloc_limit = (start + limit_size - aligned_min_obj_size);
// 添加已分配的字节数
acontext->alloc_bytes += limit_size - ((gen_number < max_generation + 1) ? aligned_min_obj_size : 0);
#ifdef FEATURE_APPDOMAIN_RESOURCE_MONITORING
if (g_fEnableARM)
{
AppDomain* alloc_appdomain = GetAppDomain();
alloc_appdomain->RecordAllocBytes (limit_size, heap_number);
}
#endif //FEATURE_APPDOMAIN_RESOURCE_MONITORING
uint8_t* saved_used = 0;
if (seg)
{
saved_used = heap_segment_used (seg);
}
// 如果传入了seg参数, 调整heap_segment::used的位置
if (seg == ephemeral_heap_segment)
{
//Sometimes the allocated size is advanced without clearing the
//memory. Let's catch up here
if (heap_segment_used (seg) < (alloc_allocated - plug_skew))
{
#ifdef MARK_ARRAY
#ifndef BACKGROUND_GC
clear_mark_array (heap_segment_used (seg) + plug_skew, alloc_allocated);
#endif //BACKGROUND_GC
#endif //MARK_ARRAY
heap_segment_used (seg) = alloc_allocated - plug_skew;
}
}
#ifdef BACKGROUND_GC
else if (seg)
{
uint8_t* old_allocated = heap_segment_allocated (seg) - plug_skew - limit_size;
#ifdef FEATURE_LOH_COMPACTION
old_allocated -= Align (loh_padding_obj_size, align_const);
#endif //FEATURE_LOH_COMPACTION
assert (heap_segment_used (seg) >= old_allocated);
}
#endif //BACKGROUND_GC
// 对设置的空间进行清0
// plug_skew其实就是SyncBlock的大小, 这里会把start前面的一个SyncBlock也清0
// 对大块内存的清0会比较耗费时间, 清0之前会释放掉MSL锁
if ((seg == 0) ||
(start - plug_skew + limit_size) <= heap_segment_used (seg))
{
dprintf (SPINLOCK_LOG, ("[%d]Lmsl to clear memory(1)", heap_number));
add_saved_spinlock_info (me_release, mt_clr_mem);
leave_spin_lock (&more_space_lock);
dprintf (3, ("clearing memory at %Ix for %d bytes", (start - plug_skew), limit_size));
memclr (start - plug_skew, limit_size);
}
else
{
uint8_t* used = heap_segment_used (seg);
heap_segment_used (seg) = start + limit_size - plug_skew;
dprintf (SPINLOCK_LOG, ("[%d]Lmsl to clear memory", heap_number));
add_saved_spinlock_info (me_release, mt_clr_mem);
leave_spin_lock (&more_space_lock);
if ((start - plug_skew) < used)
{
if (used != saved_used)
{
FATAL_GC_ERROR ();
}
dprintf (2, ("clearing memory before used at %Ix for %Id bytes",
(start - plug_skew), (plug_skew + used - start)));
memclr (start - plug_skew, used - (start - plug_skew));
}
}
// 设置BrickTable
// BrickTable中属于start的块会设置为alloc_ptr距离块开始地址的大小
// 之后一直到start + limit的块会设置为-1
//this portion can be done after we release the lock
if (seg == ephemeral_heap_segment)
{
#ifdef FFIND_OBJECT
if (gen0_must_clear_bricks > 0)
{
//set the brick table to speed up find_object
size_t b = brick_of (acontext->alloc_ptr);
set_brick (b, acontext->alloc_ptr - brick_address (b));
b++;
dprintf (3, ("Allocation Clearing bricks [%Ix, %Ix[",
b, brick_of (align_on_brick (start + limit_size))));
volatile short* x = &brick_table [b];
short* end_x = &brick_table [brick_of (align_on_brick (start + limit_size))];
for (;x < end_x;x++)
*x = -1;
}
else
#endif //FFIND_OBJECT
{
gen0_bricks_cleared = FALSE;
}
}
// verifying the memory is completely cleared.
//verify_mem_cleared (start - plug_skew, limit_size);
}
总结小对象内存的代码流程
- allocate: 尝试从分配上下文分配内存, 失败时调用allocate_more_space为分配上下文指定新的空间
- allocate_more_space: 调用try_allocate_more_space函数
- try_allocate_more_space: 检查是否有必要触发GC, 然后根据gen_number参数调用allocate_small或allocate_large函数
- allocate_small: 循环尝试进行各种回收内存的处理和调用soh_try_fit函数
- soh_try_fit: 先尝试调用a_fit_free_list_p从自由对象列表中分配, 然后尝试调用a_fit_segment_end_p从堆段结尾分配
- a_fit_free_list_p: 尝试从自由对象列表中找到足够大小的空间, 如果找到则把分配上下文指向这个空间
- adjust_limit_clr: 给分配上下文设置新的范围
- a_fit_segment_end_p: 尝试在堆段的结尾找到一块足够大小的空间, 如果找到则把分配上下文指向这个空间
- adjust_limit_clr: 给分配上下文设置新的范围
- a_fit_free_list_p: 尝试从自由对象列表中找到足够大小的空间, 如果找到则把分配上下文指向这个空间
- soh_try_fit: 先尝试调用a_fit_free_list_p从自由对象列表中分配, 然后尝试调用a_fit_segment_end_p从堆段结尾分配
- allocate_small: 循环尝试进行各种回收内存的处理和调用soh_try_fit函数
- try_allocate_more_space: 检查是否有必要触发GC, 然后根据gen_number参数调用allocate_small或allocate_large函数
- allocate_more_space: 调用try_allocate_more_space函数
分配大对象内存的代码流程
让我们来看一下大对象的内存是如何分配的 分配小对象我们从gc_heap::allocate开始跟踪, 这里我们从gc_heap::allocate_large_object开始跟踪
allocate_large_object函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp 这个函数和allocate函数不同的是它不会尝试从分配上下文中分配, 而是直接从堆段中分配
CObjectHeader* gc_heap::allocate_large_object (size_t jsize, int64_t& alloc_bytes)
{
// 创建一个空的分配上下文
//create a new alloc context because gen3context is shared.
alloc_context acontext;
acontext.alloc_ptr = 0;
acontext.alloc_limit = 0;
acontext.alloc_bytes = 0;
#ifdef MULTIPLE_HEAPS
acontext.alloc_heap = vm_heap;
#endif //MULTIPLE_HEAPS
#ifdef MARK_ARRAY
uint8_t* current_lowest_address = lowest_address;
uint8_t* current_highest_address = highest_address;
#ifdef BACKGROUND_GC
if (recursive_gc_sync::background_running_p())
{
current_lowest_address = background_saved_lowest_address;
current_highest_address = background_saved_highest_address;
}
#endif //BACKGROUND_GC
#endif // MARK_ARRAY
// 检查对象大小是否超过了最大允许的对象大小
// 超过时分配失败
size_t maxObjectSize = (INT32_MAX - 7 - Align(min_obj_size));
#ifdef BIT64
if (g_pConfig->GetGCAllowVeryLargeObjects())
{
maxObjectSize = (INT64_MAX - 7 - Align(min_obj_size));
}
#endif
if (jsize >= maxObjectSize)
{
if (g_pConfig->IsGCBreakOnOOMEnabled())
{
GCToOSInterface::DebugBreak();
}
#ifndef FEATURE_REDHAWK
ThrowOutOfMemoryDimensionsExceeded();
#else
return 0;
#endif
}
// 计算对齐
size_t size = AlignQword (jsize);
int align_const = get_alignment_constant (FALSE);
#ifdef FEATURE_LOH_COMPACTION
size_t pad = Align (loh_padding_obj_size, align_const);
#else
size_t pad = 0;
#endif //FEATURE_LOH_COMPACTION
// 调用allocate_more_space函数
// 因为分配上下文是空的, 这里我们给分配上下文指定的空间就是这个大对象使用的空间
assert (size >= Align (min_obj_size, align_const));
#ifdef _MSC_VER
#pragma inline_depth(0)
#endif //_MSC_VER
if (! allocate_more_space (&acontext, (size + pad), max_generation+1))
{
return 0;
}
#ifdef _MSC_VER
#pragma inline_depth(20)
#endif //_MSC_VER
#ifdef FEATURE_LOH_COMPACTION
// The GC allocator made a free object already in this alloc context and
// adjusted the alloc_ptr accordingly.
#endif //FEATURE_LOH_COMPACTION
// 对象分配到刚才获取到的空间的开始地址
uint8_t* result = acontext.alloc_ptr;
// 空间大小应该等于对象大小
assert ((size_t)(acontext.alloc_limit - acontext.alloc_ptr) == size);
// 返回结果
CObjectHeader* obj = (CObjectHeader*)result;
#ifdef MARK_ARRAY
if (recursive_gc_sync::background_running_p())
{
// 如果对象不在扫描范围中清掉标记的bit
if ((result < current_highest_address) && (result >= current_lowest_address))
{
dprintf (3, ("Clearing mark bit at address %Ix",
(size_t)(&mark_array [mark_word_of (result)])));
mark_array_clear_marked (result);
}
#ifdef BACKGROUND_GC
//the object has to cover one full mark uint32_t
assert (size > mark_word_size);
if (current_c_gc_state == c_gc_state_marking)
{
dprintf (3, ("Concurrent allocation of a large object %Ix",
(size_t)obj));
// 如果对象在扫描范围中则设置标记bit防止它被回收
//mark the new block specially so we know it is a new object
if ((result < current_highest_address) && (result >= current_lowest_address))
{
dprintf (3, ("Setting mark bit at address %Ix",
(size_t)(&mark_array [mark_word_of (result)])));
mark_array_set_marked (result);
}
}
#endif //BACKGROUND_GC
}
#endif //MARK_ARRAY
assert (obj != 0);
assert ((size_t)obj == Align ((size_t)obj, align_const));
alloc_bytes += acontext.alloc_bytes;
return obj;
}
allocate_more_space这个函数我们在之前已经看过了, 忘掉的可以向前翻 这个函数会调用try_allocate_more_space函数 try_allocate_more_space函数在分配大对象时会调用allocate_large函数
allocate_large函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp 这个函数的结构和alloc_small相似但是内部处理的细节不一样
BOOL gc_heap::allocate_large (int gen_number,
size_t size,
alloc_context* acontext,
int align_const)
{
// 后台GC运行时且不在计划阶段
// 原来是16次处理1次但是现在if被注释了
#ifdef BACKGROUND_GC
if (recursive_gc_sync::background_running_p() && (current_c_gc_state != c_gc_state_planning))
{
background_loh_alloc_count++;
//if ((background_loh_alloc_count % bgc_alloc_spin_count_loh) == 0)
{
// 如果合适在后台GC完成前分配对象
if (bgc_loh_should_allocate())
{
// 如果记录的LOH(Large Object Heap)增长比较大则这个线程需要暂停一下, 先安排其他线程工作
// 释放MSL锁并调用YieldThread, 如果switchCount参数(bgc_alloc_spin_loh)较大还有可能休眠1ms
if (!bgc_alloc_spin_loh)
{
Thread* current_thread = GetThread();
add_saved_spinlock_info (me_release, mt_alloc_large);
dprintf (SPINLOCK_LOG, ("[%d]spin Lmsl loh", heap_number));
leave_spin_lock (&more_space_lock);
BOOL cooperative_mode = enable_preemptive (current_thread);
GCToOSInterface::YieldThread (bgc_alloc_spin_loh);
disable_preemptive (current_thread, cooperative_mode);
enter_spin_lock (&more_space_lock);
add_saved_spinlock_info (me_acquire, mt_alloc_large);
dprintf (SPINLOCK_LOG, ("[%d]spin Emsl loh", heap_number));
}
}
// 不合适时等待后台GC完成
else
{
wait_for_background (awr_loh_alloc_during_bgc);
}
}
}
#endif //BACKGROUND_GC
gc_reason gr = reason_oos_loh;
generation* gen = generation_of (gen_number);
oom_reason oom_r = oom_no_failure;
size_t current_full_compact_gc_count = 0;
// No variable values should be "carried over" from one state to the other.
// That's why there are local variable for each state
allocation_state loh_alloc_state = a_state_start;
#ifdef RECORD_LOH_STATE
EEThreadId current_thread_id;
current_thread_id.SetToCurrentThread();
#endif //RECORD_LOH_STATE
// 开始循环切换状态, 请关注loh_alloc_state
// If we can get a new seg it means allocation will succeed.
while (1)
{
dprintf (3, ("[h%d]loh state is %s", heap_number, allocation_state_str[loh_alloc_state]));
#ifdef RECORD_LOH_STATE
add_saved_loh_state (loh_alloc_state, current_thread_id);
#endif //RECORD_LOH_STATE
switch (loh_alloc_state)
{
// 成功或失败时跳出循环
case a_state_can_allocate:
case a_state_cant_allocate:
{
goto exit;
}
// 开始时切换状态到a_state_try_fit
case a_state_start:
{
loh_alloc_state = a_state_try_fit;
break;
}
// 调用loh_try_fit函数
// 成功时切换状态到a_state_can_allocate
// 失败时切换状态到a_state_trigger_full_compact_gc或a_state_acquire_seg
case a_state_try_fit:
{
BOOL commit_failed_p = FALSE;
BOOL can_use_existing_p = FALSE;
can_use_existing_p = loh_try_fit (gen_number, size, acontext,
align_const, &commit_failed_p, &oom_r);
loh_alloc_state = (can_use_existing_p ?
a_state_can_allocate :
(commit_failed_p ?
a_state_trigger_full_compact_gc :
a_state_acquire_seg));
assert ((loh_alloc_state == a_state_can_allocate) == (acontext->alloc_ptr != 0));
break;
}
// 在创建了一个新的堆段以后调用loh_try_fit函数
// 成功时切换状态到a_state_can_allocate
// 失败时切换状态到a_state_try_fit
case a_state_try_fit_new_seg:
{
BOOL commit_failed_p = FALSE;
BOOL can_use_existing_p = FALSE;
can_use_existing_p = loh_try_fit (gen_number, size, acontext,
align_const, &commit_failed_p, &oom_r);
// 即使我们创建了一个新的堆段也不代表分配一定会成功,例如被其他线程抢走了,如果这样我们需要重试
// Even after we got a new seg it doesn't necessarily mean we can allocate,
// another LOH allocating thread could have beat us to acquire the msl so
// we need to try again.
loh_alloc_state = (can_use_existing_p ? a_state_can_allocate : a_state_try_fit);
assert ((loh_alloc_state == a_state_can_allocate) == (acontext->alloc_ptr != 0));
break;
}
// 在压缩GC后创建一个新的堆段成功, 调用loh_try_fit函数在这个堆段上分配
// 成功时切换状态到a_state_can_allocate
// 失败时如果提交到物理内存失败(物理内存不足)则切换状态到a_state_cant_allocate
// 否则再尝试一次创建一个新的堆段
case a_state_try_fit_new_seg_after_cg:
{
BOOL commit_failed_p = FALSE;
BOOL can_use_existing_p = FALSE;
can_use_existing_p = loh_try_fit (gen_number, size, acontext,
align_const, &commit_failed_p, &oom_r);
// Even after we got a new seg it doesn't necessarily mean we can allocate,
// another LOH allocating thread could have beat us to acquire the msl so
// we need to try again. However, if we failed to commit, which means we
// did have space on the seg, we bail right away 'cause we already did a
// full compacting GC.
loh_alloc_state = (can_use_existing_p ?
a_state_can_allocate :
(commit_failed_p ?
a_state_cant_allocate :
a_state_acquire_seg_after_cg));
assert ((loh_alloc_state == a_state_can_allocate) == (acontext->alloc_ptr != 0));
break;
}
// 这个状态目前不会被其他状态切换到
// 简单的调用loh_try_fit函数成功则切换到a_state_can_allocate失败则切换到a_state_cant_allocate
case a_state_try_fit_no_seg:
{
BOOL commit_failed_p = FALSE;
BOOL can_use_existing_p = FALSE;
can_use_existing_p = loh_try_fit (gen_number, size, acontext,
align_const, &commit_failed_p, &oom_r);
loh_alloc_state = (can_use_existing_p ? a_state_can_allocate : a_state_cant_allocate);
assert ((loh_alloc_state == a_state_can_allocate) == (acontext->alloc_ptr != 0));
assert ((loh_alloc_state != a_state_cant_allocate) || (oom_r != oom_no_failure));
break;
}
// 压缩GC完成后调用loh_try_fit函数
// 成功时切换状态到a_state_can_allocate
// 如果压缩后仍分配失败, 并且提交内存到物理内存失败(物理内存不足)则切换状态到a_state_cant_allocate
// 如果压缩后仍分配失败, 但是提交内存到物理内存并无失败则尝试再次创建一个新的堆段
case a_state_try_fit_after_cg:
{
BOOL commit_failed_p = FALSE;
BOOL can_use_existing_p = FALSE;
can_use_existing_p = loh_try_fit (gen_number, size, acontext,
align_const, &commit_failed_p, &oom_r);
loh_alloc_state = (can_use_existing_p ?
a_state_can_allocate :
(commit_failed_p ?
a_state_cant_allocate :
a_state_acquire_seg_after_cg));
assert ((loh_alloc_state == a_state_can_allocate) == (acontext->alloc_ptr != 0));
break;
}
// 在后台GC完成后调用loh_try_fit函数
// 成功时切换状态到a_state_can_allocate
// 如果提交内存到物理内存失败(物理内存不足)则切换状态到a_state_trigger_full_compact_gc
// 如果提交内存到物理内存并无失败则尝试创建一个新的堆段
case a_state_try_fit_after_bgc:
{
BOOL commit_failed_p = FALSE;
BOOL can_use_existing_p = FALSE;
can_use_existing_p = loh_try_fit (gen_number, size, acontext,
align_const, &commit_failed_p, &oom_r);
loh_alloc_state = (can_use_existing_p ?
a_state_can_allocate :
(commit_failed_p ?
a_state_trigger_full_compact_gc :
a_state_acquire_seg_after_bgc));
assert ((loh_alloc_state == a_state_can_allocate) == (acontext->alloc_ptr != 0));
break;
}
// 尝试创建一个新的堆段
// 成功时切换状态到a_state_try_fit_new_seg
// 失败时如果已执行了压缩则切换状态到a_state_check_retry_seg, 否则切换状态到a_state_check_and_wait_for_bgc
case a_state_acquire_seg:
{
BOOL can_get_new_seg_p = FALSE;
BOOL did_full_compacting_gc = FALSE;
current_full_compact_gc_count = get_full_compact_gc_count();
can_get_new_seg_p = loh_get_new_seg (gen, size, align_const, &did_full_compacting_gc, &oom_r);
loh_alloc_state = (can_get_new_seg_p ?
a_state_try_fit_new_seg :
(did_full_compacting_gc ?
a_state_check_retry_seg :
a_state_check_and_wait_for_bgc));
break;
}
// 尝试在压缩GC后创建一个新的堆段
// 成功时切换状态到a_state_try_fit_new_seg_after_cg
// 失败时切换状态到a_state_check_retry_seg
case a_state_acquire_seg_after_cg:
{
BOOL can_get_new_seg_p = FALSE;
BOOL did_full_compacting_gc = FALSE;
current_full_compact_gc_count = get_full_compact_gc_count();
can_get_new_seg_p = loh_get_new_seg (gen, size, align_const, &did_full_compacting_gc, &oom_r);
// Since we release the msl before we try to allocate a seg, other
// threads could have allocated a bunch of segments before us so
// we might need to retry.
loh_alloc_state = (can_get_new_seg_p ?
a_state_try_fit_new_seg_after_cg :
a_state_check_retry_seg);
break;
}
// 后台GC完成后尝试创建一个新的堆段
// 成功时切换状态到a_state_try_fit_new_seg
// 失败时如果已执行了压缩则切换状态到a_state_check_retry_seg, 否则切换状态到a_state_trigger_full_compact_gc
case a_state_acquire_seg_after_bgc:
{
BOOL can_get_new_seg_p = FALSE;
BOOL did_full_compacting_gc = FALSE;
current_full_compact_gc_count = get_full_compact_gc_count();
can_get_new_seg_p = loh_get_new_seg (gen, size, align_const, &did_full_compacting_gc, &oom_r);
loh_alloc_state = (can_get_new_seg_p ?
a_state_try_fit_new_seg :
(did_full_compacting_gc ?
a_state_check_retry_seg :
a_state_trigger_full_compact_gc));
assert ((loh_alloc_state != a_state_cant_allocate) || (oom_r != oom_no_failure));
break;
}
// 等待后台GC完成
// 如果后台GC不在运行状态中则切换状态到a_state_trigger_full_compact_gc
// 如果执行了压缩则切换状态到a_state_try_fit_after_cg, 否则切换状态到a_state_try_fit_after_bgc
case a_state_check_and_wait_for_bgc:
{
BOOL bgc_in_progress_p = FALSE;
BOOL did_full_compacting_gc = FALSE;
if (fgn_maxgen_percent)
{
dprintf (2, ("FGN: failed to acquire seg, may need to do a full blocking GC"));
send_full_gc_notification (max_generation, FALSE);
}
bgc_in_progress_p = check_and_wait_for_bgc (awr_loh_oos_bgc, &did_full_compacting_gc);
loh_alloc_state = (!bgc_in_progress_p ?
a_state_trigger_full_compact_gc :
(did_full_compacting_gc ?
a_state_try_fit_after_cg :
a_state_try_fit_after_bgc));
break;
}
// 触发第0和1和2代的压缩GC
// 成功时切换状态到a_state_try_fit_after_cg, 失败时切换状态到a_state_cant_allocate
case a_state_trigger_full_compact_gc:
{
BOOL got_full_compacting_gc = FALSE;
got_full_compacting_gc = trigger_full_compact_gc (gr, &oom_r);
loh_alloc_state = (got_full_compacting_gc ? a_state_try_fit_after_cg : a_state_cant_allocate);
assert ((loh_alloc_state != a_state_cant_allocate) || (oom_r != oom_no_failure));
break;
}
// 检查是否应该重试GC或申请新的堆段
// 应该重试GC时切换状态到a_state_trigger_full_compact_gc
// 应该重试申请新的堆段时切换状态到a_state_acquire_seg_after_cg
// 否则切换状态到a_state_cant_allocate
// 如果不能获取一个新的堆段, 但是对原来的堆段执行了压缩GC那就应该重试
case a_state_check_retry_seg:
{
BOOL should_retry_gc = retry_full_compact_gc (size);
BOOL should_retry_get_seg = FALSE;
if (!should_retry_gc)
{
size_t last_full_compact_gc_count = current_full_compact_gc_count;
current_full_compact_gc_count = get_full_compact_gc_count();
if (current_full_compact_gc_count > (last_full_compact_gc_count + 1))
{
should_retry_get_seg = TRUE;
}
}
loh_alloc_state = (should_retry_gc ?
a_state_trigger_full_compact_gc :
(should_retry_get_seg ?
a_state_acquire_seg_after_cg :
a_state_cant_allocate));
assert ((loh_alloc_state != a_state_cant_allocate) || (oom_r != oom_no_failure));
break;
}
default:
{
assert (!"Invalid state!");
break;
}
}
}
exit:
// 分配失败时处理OOM(Out Of Memory)
if (loh_alloc_state == a_state_cant_allocate)
{
assert (oom_r != oom_no_failure);
handle_oom (heap_number,
oom_r,
size,
0,
0);
add_saved_spinlock_info (me_release, mt_alloc_large_cant);
dprintf (SPINLOCK_LOG, ("[%d]Lmsl for loh oom", heap_number));
leave_spin_lock (&more_space_lock);
}
return (loh_alloc_state == a_state_can_allocate);
}
loh_try_fit函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp 处理和soh_try_fit差不多, 先尝试调用a_fit_free_list_large_p从自由对象列表中分配, 然后尝试调用loh_a_fit_segment_end_p从堆段结尾分配
BOOL gc_heap::loh_try_fit (int gen_number,
size_t size,
alloc_context* acontext,
int align_const,
BOOL* commit_failed_p,
oom_reason* oom_r)
{
BOOL can_allocate = TRUE;
// 尝试从自由对象列表分配
if (!a_fit_free_list_large_p (size, acontext, align_const))
{
// 尝试从堆段结尾分配
can_allocate = loh_a_fit_segment_end_p (gen_number, size,
acontext, align_const,
commit_failed_p, oom_r);
// 后台GC运行时, 统计在堆段结尾分配的大小
#ifdef BACKGROUND_GC
if (can_allocate && recursive_gc_sync::background_running_p())
{
bgc_loh_size_increased += size;
}
#endif //BACKGROUND_GC
}
#ifdef BACKGROUND_GC
else
{
// 后台GC运行时, 统计在自由对象列表分配的大小
if (recursive_gc_sync::background_running_p())
{
bgc_loh_allocated_in_free += size;
}
}
#endif //BACKGROUND_GC
return can_allocate;
}
a_fit_free_list_large_p函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp 和a_fit_free_list_p的处理基本相同, 但是在支持LOH压缩时会生成填充对象, 并且有可能会调用bgc_loh_alloc_clr函数
BOOL gc_heap::a_fit_free_list_large_p (size_t size,
alloc_context* acontext,
int align_const)
{
// 如果后台GC在计划阶段, 等待计划完成
#ifdef BACKGROUND_GC
wait_for_background_planning (awr_loh_alloc_during_plan);
#endif //BACKGROUND_GC
// 获取第3代的自由对象列表
BOOL can_fit = FALSE;
int gen_number = max_generation + 1;
generation* gen = generation_of (gen_number);
allocator* loh_allocator = generation_allocator (gen);
// 支持LOH压缩时需要在大对象前塞一个填充对象
#ifdef FEATURE_LOH_COMPACTION
size_t loh_pad = Align (loh_padding_obj_size, align_const);
#endif //FEATURE_LOH_COMPACTION
#ifdef BACKGROUND_GC
int cookie = -1;
#endif //BACKGROUND_GC
// 列表会按大小分为多个bucket(用链表形式链接)
// 大小会*2递增, 例如first_bucket的大小是256那第二个bucket的大小则为512
size_t sz_list = loh_allocator->first_bucket_size();
for (unsigned int a_l_idx = 0; a_l_idx < loh_allocator->number_of_buckets(); a_l_idx++)
{
if ((size < sz_list) || (a_l_idx == (loh_allocator->number_of_buckets()-1)))
{
uint8_t* free_list = loh_allocator->alloc_list_head_of (a_l_idx);
uint8_t* prev_free_item = 0;
while (free_list != 0)
{
dprintf (3, ("considering free list %Ix", (size_t)free_list));
size_t free_list_size = unused_array_size(free_list);
#ifdef FEATURE_LOH_COMPACTION
if ((size + loh_pad) <= free_list_size)
#else
if (((size + Align (min_obj_size, align_const)) <= free_list_size)||
(size == free_list_size))
#endif //FEATURE_LOH_COMPACTION
{
// 如果启用了后台GC, 并且正在分配大对象, 需要检测后台GC是否正在标记对象
#ifdef BACKGROUND_GC
cookie = bgc_alloc_lock->loh_alloc_set (free_list);
#endif //BACKGROUND_GC
// 大小足够时从该bucket的链表中pop出来
//unlink the free_item
loh_allocator->unlink_item (a_l_idx, free_list, prev_free_item, FALSE);
// Substract min obj size because limit_from_size adds it. Not needed for LOH
size_t limit = limit_from_size (size - Align(min_obj_size, align_const), free_list_size,
gen_number, align_const);
// 支持LOH压缩时需要在大对象前塞一个填充对象
#ifdef FEATURE_LOH_COMPACTION
make_unused_array (free_list, loh_pad);
limit -= loh_pad;
free_list += loh_pad;
free_list_size -= loh_pad;
#endif //FEATURE_LOH_COMPACTION
// 如果分配完还有剩余空间, 在剩余空间生成一个自由对象并塞回自由对象列表
uint8_t* remain = (free_list + limit);
size_t remain_size = (free_list_size - limit);
if (remain_size != 0)
{
assert (remain_size >= Align (min_obj_size, align_const));
make_unused_array (remain, remain_size);
}
if (remain_size >= Align(min_free_list, align_const))
{
loh_thread_gap_front (remain, remain_size, gen);
assert (remain_size >= Align (min_obj_size, align_const));
}
else
{
generation_free_obj_space (gen) += remain_size;
}
generation_free_list_space (gen) -= free_list_size;
dprintf (3, ("found fit on loh at %Ix", free_list));
#ifdef BACKGROUND_GC
if (cookie != -1)
{
// 如果后台GC正在标记对象需要调用bgc_loh_alloc_clr给分配上下文设置新的范围
bgc_loh_alloc_clr (free_list, limit, acontext, align_const, cookie, FALSE, 0);
}
else
#endif //BACKGROUND_GC
{
// 给分配上下文设置新的范围
adjust_limit_clr (free_list, limit, acontext, 0, align_const, gen_number);
}
//fix the limit to compensate for adjust_limit_clr making it too short
acontext->alloc_limit += Align (min_obj_size, align_const);
can_fit = TRUE;
goto exit;
}
// 同一bucket的下一个自由对象
prev_free_item = free_list;
free_list = free_list_slot (free_list);
}
}
// 当前bucket的大小不够, 下一个bucket的大小会是当前bucket的两倍
sz_list = sz_list * 2;
}
exit:
return can_fit;
}
adjust_limit_clr这个函数我们在看小对象的代码流程时已经看过 这里看bgc_loh_alloc_clr函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp 这个函数是在后台GC运行时分配大对象使用的, 需要照顾到运行中的后台GC
#ifdef BACKGROUND_GC
void gc_heap::bgc_loh_alloc_clr (uint8_t* alloc_start,
size_t size,
alloc_context* acontext,
int align_const,
int lock_index,
BOOL check_used_p,
heap_segment* seg)
{
// 一开始就在这片空间创建一个自由对象
// 因为等会要释放在bgc_alloc_lock中的锁再清0内存所以要先创建一个自由对象防止GC使用这块空间
// 这个自由对象在最后重新上锁后会被重置回空白的空间
make_unused_array (alloc_start, size);
#ifdef FEATURE_APPDOMAIN_RESOURCE_MONITORING
if (g_fEnableARM)
{
AppDomain* alloc_appdomain = GetAppDomain();
alloc_appdomain->RecordAllocBytes (size, heap_number);
}
#endif //FEATURE_APPDOMAIN_RESOURCE_MONITORING
size_t size_of_array_base = sizeof(ArrayBase);
// 释放cookie对应的锁 (设置数组中lock_index位置的值为0)
bgc_alloc_lock->loh_alloc_done_with_index (lock_index);
// 开始对内存进行清0
// 计算清0的的范围
// clear memory while not holding the lock.
size_t size_to_skip = size_of_array_base;
size_t size_to_clear = size - size_to_skip - plug_skew;
size_t saved_size_to_clear = size_to_clear;
if (check_used_p)
{
uint8_t* end = alloc_start + size - plug_skew;
uint8_t* used = heap_segment_used (seg);
if (used < end)
{
if ((alloc_start + size_to_skip) < used)
{
size_to_clear = used - (alloc_start + size_to_skip);
}
else
{
size_to_clear = 0;
}
// 调整heap_segment::used的位置
dprintf (2, ("bgc loh: setting used to %Ix", end));
heap_segment_used (seg) = end;
}
dprintf (2, ("bgc loh: used: %Ix, alloc: %Ix, end of alloc: %Ix, clear %Id bytes",
used, alloc_start, end, size_to_clear));
}
else
{
dprintf (2, ("bgc loh: [%Ix-[%Ix(%Id)", alloc_start, alloc_start+size, size));
}
#ifdef VERIFY_HEAP
// since we filled in 0xcc for free object when we verify heap,
// we need to make sure we clear those bytes.
if (g_pConfig->GetHeapVerifyLevel() & EEConfig::HEAPVERIFY_GC)
{
if (size_to_clear < saved_size_to_clear)
{
size_to_clear = saved_size_to_clear;
}
}
#endif //VERIFY_HEAP
// 释放MSL锁并清0内存
dprintf (SPINLOCK_LOG, ("[%d]Lmsl to clear large obj", heap_number));
add_saved_spinlock_info (me_release, mt_clr_large_mem);
leave_spin_lock (&more_space_lock);
memclr (alloc_start + size_to_skip, size_to_clear);
// 重新找一个锁锁上
// 这里的锁会在PublishObject时释放
bgc_alloc_lock->loh_alloc_set (alloc_start);
// 设置分配上下文指向的范围
acontext->alloc_ptr = alloc_start;
acontext->alloc_limit = (alloc_start + size - Align (min_obj_size, align_const));
// 把自由对象重新变回一块空白的空间
// need to clear the rest of the object before we hand it out.
clear_unused_array(alloc_start, size);
}
#endif //BACKGROUND_GC
loh_a_fit_segment_end_p函数的内容: https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp 这个函数会遍历第3代的堆段链表逐个调用a_fit_segment_end_p函数尝试分配
BOOL gc_heap::loh_a_fit_segment_end_p (int gen_number,
size_t size,
alloc_context* acontext,
int align_const,
BOOL* commit_failed_p,
oom_reason* oom_r)
{
*commit_failed_p = FALSE;
// 获取代中第一个堆段节点用于接下来的分配
heap_segment* seg = generation_allocation_segment (generation_of (gen_number));
BOOL can_allocate_p = FALSE;
while (seg)
{
// 调用a_fit_segment_end_p尝试在这个堆段的结尾分配
if (a_fit_segment_end_p (gen_number, seg, (size - Align (min_obj_size, align_const)),
acontext, align_const, commit_failed_p))
{
acontext->alloc_limit += Align (min_obj_size, align_const);
can_allocate_p = TRUE;
break;
}
else
{
if (*commit_failed_p)
{
// 如果堆段还有剩余空间但不能提交到物理内存, 则返回内存不足错误
*oom_r = oom_cant_commit;
break;
}
else
{
// 如果堆段已无剩余空间, 看链表中的下一个堆段
seg = heap_segment_next_rw (seg);
}
}
}
return can_allocate_p;
}
总结大对象内存的代码流程
- allocate_large_object: 调用allocate_more_space为一个空的分配上下文指定新的空间, 空间大小会等于对象的大小
- allocate_more_space: 调用try_allocate_more_space函数
- try_allocate_more_space: 检查是否有必要触发GC, 然后根据gen_number参数调用allocate_small或allocate_large函数
- allocate_large: 循环尝试进行各种回收内存的处理和调用soh_try_fit函数
- loh_try_fit: 先尝试调用a_fit_free_list_large_p从自由对象列表中分配, 然后尝试调用loh_a_fit_segment_end_p从堆段结尾分配
- a_fit_free_list_large_p: 尝试从自由对象列表中找到足够大小的空间, 如果找到则把分配上下文指向这个空间
- bgc_loh_alloc_clr: 给分配上下文设置新的范围, 照顾到后台GC
- adjust_limit_clr: 给分配上下文设置新的范围
- loh_a_fit_segment_end_p: 遍历第3代的堆段链表逐个调用a_fit_segment_end_p函数尝试分配
- a_fit_segment_end_p: 尝试在堆段的结尾找到一块足够大小的空间, 如果找到则把分配上下文指向这个空间
- bgc_loh_alloc_clr: 给分配上下文设置新的范围, 照顾到后台GC
- adjust_limit_clr: 给分配上下文设置新的范围
- a_fit_segment_end_p: 尝试在堆段的结尾找到一块足够大小的空间, 如果找到则把分配上下文指向这个空间
- a_fit_free_list_large_p: 尝试从自由对象列表中找到足够大小的空间, 如果找到则把分配上下文指向这个空间
- loh_try_fit: 先尝试调用a_fit_free_list_large_p从自由对象列表中分配, 然后尝试调用loh_a_fit_segment_end_p从堆段结尾分配
- allocate_large: 循环尝试进行各种回收内存的处理和调用soh_try_fit函数
- try_allocate_more_space: 检查是否有必要触发GC, 然后根据gen_number参数调用allocate_small或allocate_large函数
- allocate_more_space: 调用try_allocate_more_space函数
CoreCLR如何管理系统内存 (windows, linux)
看到这里我们应该知道分配上下文, 小对象, 大对象的内存都是来源于堆段, 那堆段的内存来源于哪里呢?
GC在程序启动时会创建默认的堆段, 调用流程是init_gc_heap => get_initial_segment => make_heap_segment
如果默认的堆段不够用会创建新的堆段
小对象的堆段会通过gc1 => plan_phase => soh_get_segment_to_expand => get_segment => make_heap_segment
创建
大对象的堆段会通过allocate_large => loh_get_new_seg => get_large_segment => get_segment_for_loh => get_segment => make_heap_segment
创建
默认的堆段会通过next_initial_memory分配内存, 这一块内存在程序启动时从reserve_initial_memory函数申请 reserve_initial_memory函数和make_heap_segment函数都会调用virtual_alloc函数
因为调用流程很长我这里就不一个个函数贴代码了, 有兴趣的可以自己去跟踪 virtual_alloc函数的调用流程是
virtual_alloc => GCToOSInterface::VirtualReserve => ClrVirtualAllocAligned => ClrVirtualAlloc =>
CExecutionEngine::ClrVirtualAlloc => EEVirtualAlloc => VirtualAlloc
如果是windows, VirtualAlloc就是同名的windows api 如果是linux或者macosx, 调用流程是VirtualAlloc => VIRTUALReserveMemory => ReserveVirtualMemory ReserveVirtualMemory函数会调用mmap函数
ReserveVirtualMemory函数的内容: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/pal/src/map/virtual.cpp#L894
static LPVOID ReserveVirtualMemory(
IN CPalThread *pthrCurrent, /* Currently executing thread */
IN LPVOID lpAddress, /* Region to reserve or commit */
IN SIZE_T dwSize) /* Size of Region */
{
UINT_PTR StartBoundary = (UINT_PTR)lpAddress;
SIZE_T MemSize = dwSize;
TRACE( "Reserving the memory now.\n");
// Most platforms will only commit memory if it is dirtied,
// so this should not consume too much swap space.
int mmapFlags = 0;
#if HAVE_VM_ALLOCATE
// Allocate with vm_allocate first, then map at the fixed address.
int result = vm_allocate(mach_task_self(),
&StartBoundary,
MemSize,
((LPVOID) StartBoundary != nullptr) ? FALSE : TRUE);
if (result != KERN_SUCCESS)
{
ERROR("vm_allocate failed to allocated the requested region!\n");
pthrCurrent->SetLastError(ERROR_INVALID_ADDRESS);
return nullptr;
}
mmapFlags |= MAP_FIXED;
#endif // HAVE_VM_ALLOCATE
mmapFlags |= MAP_ANON | MAP_PRIVATE;
LPVOID pRetVal = mmap((LPVOID) StartBoundary,
MemSize,
PROT_NONE,
mmapFlags,
-1 /* fd */,
0 /* offset */);
if (pRetVal == MAP_FAILED)
{
ERROR( "Failed due to insufficient memory.\n" );
#if HAVE_VM_ALLOCATE
vm_deallocate(mach_task_self(), StartBoundary, MemSize);
#endif // HAVE_VM_ALLOCATE
pthrCurrent->SetLastError(ERROR_NOT_ENOUGH_MEMORY);
return nullptr;
}
/* Check to see if the region is what we asked for. */
if (lpAddress != nullptr && StartBoundary != (UINT_PTR)pRetVal)
{
ERROR("We did not get the region we asked for from mmap!\n");
pthrCurrent->SetLastError(ERROR_INVALID_ADDRESS);
munmap(pRetVal, MemSize);
return nullptr;
}
#if MMAP_ANON_IGNORES_PROTECTION
if (mprotect(pRetVal, MemSize, PROT_NONE) != 0)
{
ERROR("mprotect failed to protect the region!\n");
pthrCurrent->SetLastError(ERROR_INVALID_ADDRESS);
munmap(pRetVal, MemSize);
return nullptr;
}
#endif // MMAP_ANON_IGNORES_PROTECTION
return pRetVal;
}
CoreCLR在从系统申请内存时会使用VirtualAlloc或mmap模拟的VirtualAlloc 申请后会得到一块尚未完全提交到物理内存的虚拟内存(注意保护模式是PROT_NONE, 表示该块内存不能读写执行, 内核无需设置它的PageTable) 如果你有兴趣可以看一下CoreCLR的虚拟内存占用, 工作站GC启动时就占了1G多, 服务器GC启动时就占用了20G
之后CoreCLR会根据使用慢慢的把使用的部分提交到物理内存, 流程是
GCToOSInterface::VirtualCommit => ClrVirtualAlloc => CExecutionEngine::ClrVirtualAlloc =>
EEVirtualAlloc => VirtualAlloc
如果是windows, VirtualAlloc是同名的windowsapi, 地址会被显式指定且页保护模式为可读写(PAGE_READWRITE) 如果是linux或者macosx, VirtualAlloc会调用VIRTUALCommitMemory, 且内部会调用mprotect来设置该页为可读写(PROT_READ|PROT_WRITE)
当GC回收了垃圾对象, 不再需要部分内存时会把内存还给系统, 例如回收小对象后的流程是
gc1 => decommit_ephemeral_segment_pages => decommit_heap_segment_pages => GCToOSInterface::VirtualDecommit
GCToOSInterface::VirtualDecommit的调用流程是
GCToOSInterface::VirtualDecommit => ClrVirtualFree => CExecutionEngine::ClrVirtualFree =>
EEVirtualFree => VirtualFree
如果是windows, VirtualFree是同名的windowsapi, 表示该部分虚拟内存已经不再使用内核可以重置它们的PageTable 如果是linux或者macosx, VirtualFree通过mprotect模拟, 设置该页的保护模式为PROT_NONE
VirtualFree函数的内容: https://github.com/dotnet/coreclr/blob/release/1.1.0/src/pal/src/map/virtual.cpp#L1291
BOOL
PALAPI
VirtualFree(
IN LPVOID lpAddress, /* Address of region. */
IN SIZE_T dwSize, /* Size of region. */
IN DWORD dwFreeType ) /* Operation type. */
{
BOOL bRetVal = TRUE;
CPalThread *pthrCurrent;
PERF_ENTRY(VirtualFree);
ENTRY("VirtualFree(lpAddress=%p, dwSize=%u, dwFreeType=%#x)\n",
lpAddress, dwSize, dwFreeType);
pthrCurrent = InternalGetCurrentThread();
InternalEnterCriticalSection(pthrCurrent, &virtual_critsec);
/* Sanity Checks. */
if ( !lpAddress )
{
ERROR( "lpAddress cannot be NULL. You must specify the base address of\
regions to be de-committed. \n" );
pthrCurrent->SetLastError( ERROR_INVALID_ADDRESS );
bRetVal = FALSE;
goto VirtualFreeExit;
}
if ( !( dwFreeType & MEM_RELEASE ) && !(dwFreeType & MEM_DECOMMIT ) )
{
ERROR( "dwFreeType must contain one of the following: \
MEM_RELEASE or MEM_DECOMMIT\n" );
pthrCurrent->SetLastError( ERROR_INVALID_PARAMETER );
bRetVal = FALSE;
goto VirtualFreeExit;
}
/* You cannot release and decommit in one call.*/
if ( dwFreeType & MEM_RELEASE && dwFreeType & MEM_DECOMMIT )
{
ERROR( "MEM_RELEASE cannot be combined with MEM_DECOMMIT.\n" );
bRetVal = FALSE;
goto VirtualFreeExit;
}
if ( dwFreeType & MEM_DECOMMIT )
{
UINT_PTR StartBoundary = 0;
SIZE_T MemSize = 0;
if ( dwSize == 0 )
{
ERROR( "dwSize cannot be 0. \n" );
pthrCurrent->SetLastError( ERROR_INVALID_PARAMETER );
bRetVal = FALSE;
goto VirtualFreeExit;
}
/*
* A two byte range straddling 2 pages caues both pages to be either
* released or decommitted. So round the dwSize up to the next page
* boundary and round the lpAddress down to the next page boundary.
*/
MemSize = (((UINT_PTR)(dwSize) + ((UINT_PTR)(lpAddress) & VIRTUAL_PAGE_MASK)
+ VIRTUAL_PAGE_MASK) & ~VIRTUAL_PAGE_MASK);
StartBoundary = (UINT_PTR)lpAddress & ~VIRTUAL_PAGE_MASK;
PCMI pUnCommittedMem;
pUnCommittedMem = VIRTUALFindRegionInformation( StartBoundary );
if (!pUnCommittedMem)
{
ASSERT( "Unable to locate the region information.\n" );
pthrCurrent->SetLastError( ERROR_INTERNAL_ERROR );
bRetVal = FALSE;
goto VirtualFreeExit;
}
TRACE( "Un-committing the following page(s) %d to %d.\n",
StartBoundary, MemSize );
// Explicitly calling mmap instead of mprotect here makes it
// that much more clear to the operating system that we no
// longer need these pages.
if ( mmap( (LPVOID)StartBoundary, MemSize, PROT_NONE,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0 ) != MAP_FAILED )
{
#if (MMAP_ANON_IGNORES_PROTECTION)
if (mprotect((LPVOID) StartBoundary, MemSize, PROT_NONE) != 0)
{
ASSERT("mprotect failed to protect the region!\n");
pthrCurrent->SetLastError(ERROR_INTERNAL_ERROR);
munmap((LPVOID) StartBoundary, MemSize);
bRetVal = FALSE;
goto VirtualFreeExit;
}
#endif // MMAP_ANON_IGNORES_PROTECTION
SIZE_T index = 0;
SIZE_T nNumOfPagesToChange = 0;
/* We can now commit this memory by calling VirtualAlloc().*/
index = (StartBoundary - pUnCommittedMem->startBoundary) / VIRTUAL_PAGE_SIZE;
nNumOfPagesToChange = MemSize / VIRTUAL_PAGE_SIZE;
VIRTUALSetAllocState( MEM_RESERVE, index,
nNumOfPagesToChange, pUnCommittedMem );
goto VirtualFreeExit;
}
else
{
ASSERT( "mmap() returned an abnormal value.\n" );
bRetVal = FALSE;
pthrCurrent->SetLastError( ERROR_INTERNAL_ERROR );
goto VirtualFreeExit;
}
}
if ( dwFreeType & MEM_RELEASE )
{
PCMI pMemoryToBeReleased =
VIRTUALFindRegionInformation( (UINT_PTR)lpAddress );
if ( !pMemoryToBeReleased )
{
ERROR( "lpAddress must be the base address returned by VirtualAlloc.\n" );
pthrCurrent->SetLastError( ERROR_INVALID_ADDRESS );
bRetVal = FALSE;
goto VirtualFreeExit;
}
if ( dwSize != 0 )
{
ERROR( "dwSize must be 0 if you are releasing the memory.\n" );
pthrCurrent->SetLastError( ERROR_INVALID_PARAMETER );
bRetVal = FALSE;
goto VirtualFreeExit;
}
TRACE( "Releasing the following memory %d to %d.\n",
pMemoryToBeReleased->startBoundary, pMemoryToBeReleased->memSize );
if ( munmap( (LPVOID)pMemoryToBeReleased->startBoundary,
pMemoryToBeReleased->memSize ) == 0 )
{
if ( VIRTUALReleaseMemory( pMemoryToBeReleased ) == FALSE )
{
ASSERT( "Unable to remove the PCMI entry from the list.\n" );
pthrCurrent->SetLastError( ERROR_INTERNAL_ERROR );
bRetVal = FALSE;
goto VirtualFreeExit;
}
pMemoryToBeReleased = NULL;
}
else
{
ASSERT( "Unable to unmap the memory, munmap() returned an abnormal value.\n" );
pthrCurrent->SetLastError( ERROR_INTERNAL_ERROR );
bRetVal = FALSE;
goto VirtualFreeExit;
}
}
VirtualFreeExit:
LogVaOperation(
(dwFreeType & MEM_DECOMMIT) ? VirtualMemoryLogging::VirtualOperation::Decommit
: VirtualMemoryLogging::VirtualOperation::Release,
lpAddress,
dwSize,
dwFreeType,
0,
NULL,
bRetVal);
InternalLeaveCriticalSection(pthrCurrent, &virtual_critsec);
LOGEXIT( "VirtualFree returning %s.\n", bRetVal == TRUE ? "TRUE" : "FALSE" );
PERF_EXIT(VirtualFree);
return bRetVal;
}
我们可以看出, CoreCLR管理系统内存的方式比较底层 在windows上使用了VirtualAlloc和VirtualFree 在linux上使用了mmap和mprotect 而不是使用传统的malloc和new 这样会带来更好的性能但同时增加了移植到其他平台的成本
动态调试GC分配对象内存的过程
要深入学习CoreCLR光看代码是很难做到的, 比如这次大部分来源的gc.cpp有接近37000行的代码, 为了很好的了解CoreCLR的工作原理这次我自己编译了CoreCLR并在本地用lldb进行了调试, 这里我分享一下编译和调试的过程 这里我使用了ubuntu 16.04 LTS, 因为linux上部署编译环境比windows要简单很多
下载CORECLR:
git clone https://github.com/dotnet/coreclr.git
切换到你正在使用的版本, 请务必切换不要直接去编译master分支
git checkout v1.1.0
参考微软的帮助安装好需要的包
# https://github.com/dotnet/coreclr/blob/master/Documentation/building/linux-instructions.md
echo "deb http://llvm.org/apt/trusty/ llvm-toolchain-trusty-3.6 main" | sudo tee /etc/apt/sources.list.d/llvm.list
wget -O - http://llvm.org/apt/llvm-snapshot.gpg.key | sudo apt-key add -
sudo apt-get update
sudo apt-get install cmake llvm-3.5 clang-3.5 lldb-3.6 lldb-3.6-dev libunwind8 libunwind8-dev gettext libicu-dev liblttng-ust-dev libcurl4-openssl-dev libssl-dev uuid-dev
cd coreclr
./build.sh
执行build.sh会从微软的网站下载一些东西, 如果很长时间都下载不成功你应该考虑挂点什么东西
编译过程需要几十分钟, 完成以后可以在coreclr/bin/Product/Linux.x64.Debug
下看到编译结果
完成以后用dotnet创建一个新的可执行项目, 在project.json中添加runtimes节
{
"runtimes": {
"ubuntu.16.04-x64": {}
}
}
Program.cs的代码可以随意写, 想测哪部分就写哪部分的代码,我这里写的是多线程分配内存然后释放的代码
using System;
using System.Threading;
using System.Collections.Generic;
namespace ConsoleApplication
{
public class A
{
public int a;
public byte[] padding;
}
public class Program
{
public static void ThreadBody()
{
Thread.Sleep(1000);
var list = new List<A>();
for (long x = 0; x < 1000000; ++x) {
list.Add(new A());
}
}
public static void Main(string[] args)
{
var threads = new List<Thread>();
for (var x = 0; x < 100; ++x)
{
var thread = new Thread(ThreadBody);
threads.Add(thread);
thread.Start();
}
foreach (var thread in threads)
{
thread.Join();
}
GC.Collect();
Console.WriteLine("memory released");
Console.ReadLine();
}
}
}
写完以后编译并发布
dotnet restore
dotnet publish
发布后bin/Debug/netcoreapp1.1/ubuntu16.04-x64/publish
会多出最终发布的文件
把刚才CoreCLR编译出来的coreclr/bin/Product/Linux.x64.Debug
下的所有文件复制到publish
目录下, 并覆盖原有文件
微软官方的调试文档可见 https://github.com/dotnet/coreclr/blob/release/1.1.0/Documentation/building/debugging-instructions.md
使用lldb启动进程, 这里我项目名称是coreapp所以publish下的可执行文件名称也是coreapp
lldb-3.6 ./coreapp
启动进程后可以打命令来调试, 需要中断(暂停)程序运行可以按下ctrl+c 这张图中的命令
b allocate_small
给函数下断点, 这里的allocate_small虽然全名是SVR::gc_heap::allocate_small或WKS::gc_heap::allocate_small
但是lldb允许用短名称下断点, 碰到多个符合的函数会一并截取
r
运行程序, 之前在pending中的断点如果在程序运行后可以确定内存位置则实际的添加断点
bt
查看当前的堆栈调用树, 可以看当前被调用的函数的来源是哪些函数
这张图中的命令
n
步过, 遇到函数不会进去, 如果需要步进可以用s
另外步过汇编和步进汇编是ni和si
fr v
查看当前堆栈帧中的变量
也就是传入的参数和本地变量
p acontext->alloc_ptr
p *acontext
打印全局或本地变量的值, 这个命令是调试中必用的命令, 不仅支持查看变量还支持计算表达式
这张图中的命令
c
继续中断进程直到退出或下一个断点
br del
删除之前设置的所有断点
这张图显示的是线程列表中的第一个线程的分配上下文内容, 0x168可以通过p &((Thread*)nullptr)->m_Link
计算得出(就是offsetof)
这张图中的命令
me re -s4 -fx -c12 0x00007fff5c006f00
读取0x00007fff5c006f00开始的内存, 单位是4byte, 表现形式是hex, 显示12个单位
lldb不仅能调试CoreCLR自身的代码 还能用来调试用户写的程序代码, 需要微软的SOS插件支持 详细可以看微软的官方文档 https://github.com/dotnet/coreclr/blob/release/1.1.0/Documentation/building/debugging-instructions.md
最后附上在这次分析中我常用的lldb命令 学习lldb可以查看官方的Tutorial和GDB and LLDB command examples
plugin load libsosplugin.so
process launch -s
process handle -s false SIGUSR1 SIGUSR2
breakpoint set -n LoadLibraryExW
c
sos DumpHeap
bpmd coreapp.dll ConsoleApplication.Program.Main
p g_pGCHeap
p n_heaps
p g_heaps[0]
p *WKS::gc_heap::ephemeral_heap_segment
p g_heaps[0]->ephemeral_heap_segment
p s_pThreadStore->m_ThreadList
p &((Thread*)nullptr)->m_Link
p ((Thread*)((char*)s_pThreadStore->m_ThreadList.m_link.m_pNext-0x168))->m_alloc_context
p ((Thread*)((char*)s_pThreadStore->m_ThreadList.m_link.m_pNext->m_pNext-0x168))->m_alloc_context
me re -s4 -fx -c100 0x00007fff5c027fe0
p generation_table
p generation_table[0]
p generation_table[2].free_list_allocator
p generation_table[2].free_list_allocator.first_bucket.head
p (generation_table[2].free_list_allocator.buckets)->head
p (generation_table[2].free_list_allocator.buckets+1)->head
p *generation_table[2].free_list_allocator.buckets
wa s v generation_table[2].free_list_allocator.first_bucket.head
me re -s8 -fx -c3 0x00007fff5bfff018
参考链接
https://github.com/dotnet/coreclr/blob/master/Documentation/botr/garbage-collection.md https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gcsvr.cpp https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gcwks.cpp https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gcimpl.h https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gcpriv.h https://github.com/dotnet/coreclr/blob/release/1.1.0/src/gc/gc.h#L162 https://github.com/dotnet/coreclr/blob/release/1.1.0/src/vm/gchelpers.cpp#L931 https://raw.githubusercontent.com/dotnet/coreclr/release/1.1.0/src/gc/gc.cpp https://github.com/dotnet/coreclr/blob/release/1.1.0/src/pal/src/map/virtual.cpp#L894 https://github.com/dotnet/coreclr/blob/master/Documentation/building/linux-instructions.md https://github.com/dotnet/coreclr/blob/release/1.1.0/Documentation/building/debugging-instructions.md https://docs.microsoft.com/en-us/dotnet/articles/core/tools/project-json https://github.com/dotnet/coreclr/issues/8959 https://github.com/dotnet/coreclr/issues/8995 https://github.com/dotnet/coreclr/issues/9053
因为gc的代码实在庞大并且注释少, 这次的分析我不仅在官方的github上提问了还动用到lldb才能做到初步的理解 下一篇我将讲解GC内存回收器的内部实现, 可能需要的时间更长, 请耐心等待吧